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Design of complex products with several interacting subsystems or disciplinary analyses
poses substantive challenges to both analysis and optimization, necessitating specialized
solution techniques. A product or system may qualify as complex due to large scale or
due to strong interactions. Single-level strategies for complex system optimization cen-
tralize decision-making authority, while multilevel strategies distribute the decision-
making process. This article studies important differences between two popular single-
level formulations: multidisciplinary feasible (MDF) and individual disciplinary feasible
(IDF). Results presented aim at aiding practitioners in selecting between formulations.
Specifically, while IDF incurs some computational overhead, it may find optima hidden to
MDF and is more efficient computationally for strongly coupled problems; further, MDF
is sensitive to variations in coupling strength, while IDF is not. Conditions that lead to
failure of MDF are described. Two new reproducible design examples are introduced to
illustrate these findings and to provide test problems for other investigations.
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Introduction
Design of complex products with several interacting sub-

ystems or disciplinary analyses poses substantive challenges to
oth analysis and optimization, necessitating specialized solution
echniques. A product or system may qualify as complex due to
arge scale �large number of members, inputs, or outputs� or due
o strong interactions. These interactions complicate multidisci-
linary design optimization �MDO�, but provide opportunity to
xploit synergy between system members. Analysis of the system
s an undivided whole can be inefficient, if not intractable. An
lternative is to partition the system into smaller subsystems, and
oordinate the solution of the subsystems. Wagner �1� identified
our paradigms of system partitioning: object-based, aspect-based,
equential, and matrix. The aspect �discipline� partitioning para-
igm is used in this article.

A system consisting of N subsystems can have up to N�N−1�
ouplings. The number and strength of these couplings influences
he difficulty of addressing tasks required for system optimization.
ogers and Bloebaum quantify coupling strength with the normal-

zed derivatives of quantities that couple subsystems �2�. Haftka,
obieski, and Padula define coupling strength similarly, but also
resent an alternative metric based on the relative difference be-
ween derivatives that reflects the difficulty of analyzing a coupled
ystem more accurately �3�. An intuitive description of this alter-
ative approach is given in this article. Alyaqout, Papalambros,
nd Ulsoy define a measure of coupling strength that accounts for
ptimization algorithm considerations, in addition to analysis con-
iderations �4�. Sosa, Eppinger, and Rowles present a scheme to
haracterize coupling strength based on design expert knowledge,
elated to the required frequency of communication between de-
ign groups �5,6�.

In system optimization, each subsystem may need to sacrifice
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its own needs in deference to the overall system objective. The
traditional sequential design process �7�, also known as block co-
ordinate descent �8�, allows each subsystem to seek its own ob-
jective in sequence. This process begins by optimizing the first
subsystem, fixing that aspect of the system design, and then pro-
ceeding with subsequent subsystem designs. The approach deals
with the interactions, but cannot exploit them to synergistically
improve system performance. Such improvement can be achieved
through understanding the partitioning or structure of the problem,
motivating decomposition-based optimization methods, such as
the single-level methods discussed in this article. We consider
system design problems whose underlying analysis can be parti-
tioned into N smaller analysis blocks, or subsystems, as illustrated
in Fig. 1.

Each subsystem analysis requires as input relevant design vari-
able values, and possibly analysis outputs from other subsystems.
The design vector for the entire system is x, and the components
of x that are input to subsystem i form the vector xi. The compo-
nents of xi fall into two categories: local variables �x�i� are design
variables that are inputs only to subsystem i; shared variables �xsi�
are inputs to subsystem i and at least one other subsystem. The
collection of analysis outputs generated by subsystem j and input
to subsystem i is yij. These interaction quantities are termed cou-
pling variables. Systems generally will not possess all of the pos-
sible connections or outputs shown in Fig. 1.

In addition to computing coupling variable values, subsystems
may also compute function values required for solving the system
optimization problem: hi and gi are, respectively, the equality and
inequality design constraints computed by subsystem i, and f is
the system objective function, which is assumed to be computed
by subsystem N. The collections of all equality and inequality
constraints are h= �h1 ,h2 , . . . ,hN� and g= �g1 ,g2 , . . . ,gN�, respec-
tively. In summary, subsystem analysis i entails taking in values
for xi and yij �∀j� �1,2 , . . . ,N� \ i�, and calculating values for y ji

�∀j� �1,2 , . . . ,N� \ i�, hi, gi, and, if i=N, f . Subsystem analysis is
commonly performed using computer-aided engineering tools,
such as finite element analysis.
The coupling variables input to subsystem i form the vector
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i= �yij1
,yij2

, . . . ,yijN−1
�, �j1 , j2 , . . . , jN−1�= �1,2 , . . . ,N� \ i. The

ector of all coupling variables input to all subsystems is y
�y1 ,y2 , . . . ,yN�. The value of each coupling variable yij is com-
uted by a corresponding vector analysis function aij�x j ,y j�. More
pecifically, the quantities computed by subsystem j and passed to
ubsystem i are yij =aij�x j ,y j�. The vector of all analysis functions
hat are used to compute coupling variable values is a�x ,y�, which
s ordered such that its components correspond directly to the
omponents of y.

Given fixed values for coupling and design variables, the evalu-
tion of a�x ,y� returns computed values for y. Because analysis
unctions are interdependent, the computed values for y may not
atch the original input values for y. System analysis is the task

f finding input values for y for a given x such that the computed
oupling variable values agree with the corresponding input cou-
ling variable values. A system in this state is said to be consis-
ent. The system analysis problem is to find y such that the system
nalysis equations �sometimes called consistency or equilibrium
quations� given in Eq. �1� are satisfied:

y − a�x,y� = 0 �1�
A solution to the system analysis problem is called a fixed point

yp�, since evaluating a�x ,yp� returns the original input vector yp.
ixed points are functions of x, since their values vary with sys-

em design, and can be denoted yp�x�. The system analysis block,
llustrated in Fig. 1, takes as input a fixed design x, solves Eq. �1�,
nd uses the resulting yp�x� to calculate the system analysis out-
uts required by the system design optimization problem, i.e.,

f�x ,yp�x��, g�x ,yp�x��, and h�x ,yp�x��.
The approach to solving Eq. �1� is an important distinction

etween the formulations presented in this article. The system
esign optimization problem, given in Eq. �2�, seeks x such that
he system objective is minimized and all design constraints are
atisfied, while ensuring system consistency. System consistency
an be enforced by either the optimization algorithm or a separate
ystem analysis algorithm; each approach is explored in this ar-
icle:

min
x=�x�,xs�

f�x,yp�x��

subject to g�x,yp�x�� � 0

h�x,yp�x�� = 0

�2�

This article investigates critical differences between the imple-
entation of two single-level formulations for complex system

ptimization, multidisciplinary feasible �MDF�, and individual
isciplinary feasible �IDF� �9�, to aid practitioners in problem for-
ulation selection. Two specific phenomena are studied in detail:

he effect of subsystem interdependence �coupling� on method

ig. 1 The system analysis block with nonhierarchic relation-
hips between subsystems
erformance, and the ability to find superior solutions that are
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hidden to traditional methods. Some background in single-level
system optimization is provided first; two design examples are
then presented, followed by conclusions.

2 Review of Single-Level MDO Formulations
The formulations and strategies for the MDF and IDF method-

ologies are presented in �9�, and reviewed here. In these single-
level formulations, all decision making is centralized and per-
formed by a single optimization algorithm. Single-level
formulations can be effective at dealing with systems possessing
strong interactions, but are not well suited for problems of large
dimension, where multilevel formulations may be preferred
�10,11�. Balling and Sobieski provided a review of single-level
formulations �12�, and Balling and Wilkinson implemented these
formulations in the solution of analytical test problems �13�.
Hulme and Bloebaum �14� compared the implementation of
single-level formulations using many test problems of varying
size and coupling strength, with emphasis on solution differences
that appear to be due to numerical limitations relating to increased
problem dimension. None of the preceding publications, however,
addresses how implementation of these formulations exhibits per-
formance variation with respect to changes in coupling strength of
a specific design problem, or address the ability of IDF to find
fundamentally different solutions in practice. In addition to pre-
senting results concerning these issues, this article clarifies cases
where MDF implementations can fail.

2.1 Multidisciplinary Feasible Formulation. The most basic
of MDO formulations is the MDF approach �Fig. 2�, also known
as “nested analysis and design” or “All-in-one”. A single system-
level optimizer is used, and a separate algorithm performs the
system analysis task. The optimizer supplies the system analyzer
with a design x, and the system analyzer returns the function
values f , g, and h. The MDF problem formulation is identical to
the problem statement of Eq. �2�; yp�x� is computed at every step
of the optimization process using a system analysis algorithm.

The fixed point iteration �FPI� algorithm is a popular system
analysis method for MDF. Section 3 will elucidate some chal-
lenges in using FPI in conjunction with system optimization.
Other system analysis methods exist, but also exhibit their own
difficulties, and will not be discussed in this article. A design
optimization strategy is classified as MDF if a complete system
analysis is performed for every optimization iteration. The analy-
sis is “nested” within the design. The optimizer is responsible to
find the optimal design x* �the design solution�, while the system
analyzer is responsible to find yp�x� �the system analysis
solution�.

This approach may be desirable if the subsystems are weakly
coupled �fast system analysis convergence�, and if the subsystem

Fig. 2 MDF architecture
analyses are not computationally expensive. In addition, MDF
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ases the incorporation of legacy analysis tools. If a design orga-
ization already performs a complete analysis before making a
esign decision, MDF is a natural fit.

Although the merits of MDF are notable, its shortcomings must
e clearly understood. MDF is dependent upon the effectiveness
f the system analyzer. If the analyzer does not converge at any
oint in the process, the optimizer may fail. The nested analysis
nd optimization process required by MDF can be computation-
lly inefficient, and motivates approaches that eliminate the need
or repeated system analysis �15�. In addition, typical MDF imple-
entations cannot exploit the potential coarse-grained parallelism

f distinct subsystem analyses. MDF has been aptly termed a
brute force” approach �16�.

2.2 Individual Disciplinary Feasible Formulation. In the
DF formulation, an analyzer for each subsystem is employed and
single system-level optimizer is used, but the optimizer, rather

han a system analysis algorithm, coordinates the interactions be-
ween the subsystem analyses. The IDF architecture is illustrated
n Fig. 3 using a two-element system. The optimizer chooses val-
es for both design and coupling variables: system analysis and
esign are performed simultaneously. Since the system optimizer
rovides all inputs required for all subsystems concurrently, sub-
ystem analyses may be executed in parallel.

The IDF formulation is given in Eq. �3�. It differs from the
DF formulation in that the decision variable vector includes

oth design variables x and coupling variables y, while auxiliary
onstraints haux are added to ensure system consistency eliminat-
ng the need to solve for yp�x� at each optimization iteration.

min
x=�x�,xs�,y

f�x,y�

subject to g�x,y� � 0

h�x,y� = 0

haux�x,y� = y − a�x,y� = 0

�3�

IDF facilitates coarse-grained parallelism, improves conver-
ence properties, and drives the design toward better solutions if
ultiple analysis solutions exist. If the solution process is inter-

upted, the intermediate design may not be consistent or feasible.
n contrast, an interrupted MDF solution will yield a consistent,
ut potentially infeasible, design. Since IDF does not require the
requently expensive task of achieving system consistency when
ar from the solution, the optimization algorithm can trace a more
fficient path toward the solution and computational expense is
educed through the elimination of repeated system analysis steps
17�.

IDF is more centralized than MDF, and the dimension of the
ptimization problem is increased since coupling variables are
ade decision variables. This increase in dimension can reduce

umerical solution accuracy when the problem size is large, as
vident in the results presented by Hulme and Bloebaum �14�.
DF may be preferable when the dimension of y is much larger

Fig. 3 IDF architecture
han the dimension of x �3,17�. Furthermore, auxiliary equality
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constraints can introduce numerical solution difficulties �17,18�.
Section 3 will show that using the IDF formulation can help

find superior solutions that are hidden to MDF implementations,
and Secs. 4 and 5 will demonstrate that IDF results in improved
computational efficiency for strongly coupled problems �as pre-
dicted in �9��. If a high level of centralization is acceptable, IDF
may be an ideal design strategy.

3 System Analysis
The system analysis equations of Eq. �1� may be solved with

iterative methods such as Newton-Raphson or FPI �19�. FPI is
regularly employed as the analysis tool for the MDF formulation.
Due to its intuitive implementation, MDF is the most frequently
utilized MDO strategy �16�. However, it should not be applied
without recognition of its shortcomings. As an alternative to nest-
ing FPI within an optimization algorithm, solution of some or all
system analysis equations may be performed by the optimization
algorithm, as is the case with IDF, which can alleviate difficulties
encountered with MDF implementations. This section reviews the
nature of FPI, explores some issues with its use in MDF, and
presents convergence conditions for FPI to aid intuition. These
convergence conditions are foundational to understanding cou-
pling strength. Haftka et al. �3� presented two definitions for cou-
pling strength—the first accounting for the magnitude of inter-
analysis derivatives, and the second for the relationship between
these derivatives. This section, along with subsequent design ex-
amples, strengthens the position of the second definition.

3.1 Fixed Point Iteration. A two-element coupled system is
depicted in Fig. 4, which possesses feedback coupling, since a21
depends on the output of a12 and vice versa. Since x is fixed
during system analysis, it is omitted from the current discussion.

To employ FPI for system analysis, an initial guess is made for
the input to the subsystem that is executed first, and the analyses
are iteratively performed with updated coupling variable values
until consistency is achieved, i.e., coupling variables match analy-
sis outputs, satisfying Eq. �1�. If the system meets certain criteria,
this process will converge to a fixed point. The FPI algorithm for
the two-dimensional example problem is �19�:

Step 0: choose initial guess y12
0 , set k=0

Step 1: k=k+1
Step 2: y21

k =a1�y12
k−1�

Step 3: y12
k =a2�y21

k �
Step 4: if �yk−yk−1 � ��, then stop, otherwise go to Step 1.

When the stopping criterion in Step 4 is met, the system is
epsilon-consistent, approximately satisfying Eq. �1�. The norm in
Step 4 is typically the Euclidian or infinity norm. Figure 5 illus-
trates the analysis space of a sample two-element system, which
possesses two fixed points at the intersections of the analysis func-
tions. Following the algorithm above, FPI will converge to the
fixed point ypA

if y12
0 is near this point, but never to ypB

for any
y12

0 .
Studying this result, it can be seen graphically that if the line

traced by a12 is steeper than the line traced by a21 in the neigh-
borhood of a fixed point, then FPI will converge to that fixed
point. This observation agrees with the well-known necessary and

Fig. 4 Two-element coupled system
sufficient conditions for FPI convergence �20�:
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� �a21�y12�
�y12

	−1

�
�a12�y21�

�y21
�4�

The derivatives in Eq. �4�, in normalized form, are used by
ogers and Bloebaum �2� to quantify coupling strength between

ubsystems. Intuitively, higher sensitivity between subsystems
ill require more iterations during analysis. When the specific

olution algorithm is FPI, however, computational effort depends
nstead on the relationship between these sensitivities. For ex-
mple, if the relation in Eq. �4� is satisfied but is near equality,
onvergence will require numerous iterations, and will cycle with-
ut convergence if the inequality becomes equality. If we define
oupling strength as the effort required to bring a coupled system
nto a consistent state, rather than just the influence that the sub-
ystems have on each other, then coupling strength is more aptly
uantified through a comparison of derivative values than through
bsolute derivative magnitudes.

3.2 Example: Hidden Optima. Consider the IDF formula-
ion of the two-element system optimization problem given in Eq.
5�.

min
x,y f�x,y� = y12

2 − 100y21 + 0.1x�x

subject to haux�x,y� = y − a�x,y� = 0

where a21�y12,x1� = �1�x1��y12 − �1�2

a12�y21,x2� = �2�x2�y21 + �2

�1�x1� =
0.25

1 + ex1
+ 0.5

�2�x2� = − � 1

1 + ex2
+ 0.5	

�1 = 3, �2 = 3.5

�5�

For any x�R2, two fixed points exist, similar to the system in
ig. 5. FPI is capable of finding only a point with small y21 and

arge y12, which is a local optimum. The second fixed point has
he reverse properties, and leads to the global optimum. Even
hen started at the global optimum, the MDF implementation
oves toward the inferior local optimum f�xMDF

* �=−0.244 at

MDF
* = �−1.902,2.273�. The IDF implementation finds the global
ptimum f�xIDF

* �=−975.692 at xIDF
* = �5.824,7.754�. It can be

hown using Eq. �4� that MDF implemented using FPI is inca-
able of finding the global optimum. Physically meaningful mod-
ls can also exhibit such behavior. Note that the MDF and IDF
mplementations solve identical design problems; the different so-
utions follow from limitations of FPI. The MDF formulation is

Fig. 5 System with multiple fixed points
ndirectly limited by its dependence on available system analysis
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tools.
Although the optimization space for IDF is more complex, the

problem design space can be explored more effectively. When the
f�x� response surface �as computed with FPI� is visualized graphi-
cally, only a single optimum is seen at xMDF

* . Since the IDF opti-
mization space is in R4, the objective function cannot be visual-
ized easily. One approach is to plot the objective function along
the line that connects the MDF and IDF solutions, i.e., plot f���
= f���xIDF

* yIDF
* �+ �1−���xMDF

* yp�xMDF
* ���, where yIDF

* is the cou-
pling variable vector at the IDF solution, and yp�xMDF

* � is the
coupling variable fixed point computed by FPI at xMDF

* . The aux-
iliary constraints can be included in the visualization by adding a
penalty for constraint violation to the objective function: f����
= f���+500�haux�x ,y��2

2. Figure 6 illustrates how using IDF can
reveal optima that are hidden to MDF. For the points represented
in this plot, the auxiliary constraint violation is zero only at the
MDF and IDF solutions. It is hypothesized that other methods that
employ simultaneous analysis and design, such as analytical target
cascading�21�, share this desirable behavior with IDF.

Thus, although FPI implementation is straightforward, it pre-
sents several difficulties: FPI may not converge to an analysis
solution; if multiple solutions exist, FPI may not find them all; the
sequential nature of FPI prevents the parallel execution of analy-
ses. When FPI is used as the system analysis tool for MDF, all of
these same issues arise. The optimization problem may not con-
verge, and when it converges, the globally optimal solution may
not be found. In addition, the resulting nested optimization and
analysis process can be inefficient. These algorithmic consider-
ations are critical factors in making problem formulation
decisions.

This section explored issues associated with FPI, established
the ability of IDF to find “hidden” optima, and laid a foundation
for the understanding of coupling strength. The following two
sections use reproducible engineering design examples to illus-
trate how coupling strength influences the computational perfor-
mance of MDF and IDF implementations. Each of the examples
enable variation of coupling strength without changing the dimen-
sion or nature of the problem. This facilitates numerical experi-
ments that reveal the distinct response of MDF and IDF to in-
creased coupling strength.

4 Air Flow Sensor Design
An air flow sensor design problem that incorporates structural

and aerodynamic analysis is considered. Vane airflow �VAF� sen-

Fig. 6 IDF optimization space visualization
sors are used in automotive applications to monitor the rate at
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hich air enters the engine for use in fuel injection control. A VAF
ensor is illustrated in Fig. 7 �22�. Incoming air flows past the
tator flap, which deflects in proportion to air flow velocity. A
ypass channel reduces the sensor’s impedance on airflow. A po-
entiometer measures this deflection angle and provides a signal to
he engine control unit.

A simplified model of a VAF sensor is used in this design
xample �Fig. 8�. The stator flap has length � and width w, is
ttached to its base with a revolute joint, and is biased to the
ertical position with a torsional spring of stiffness k. The plate is
ubject to horizontal air flow of speed v that results in a drag force
. The design objective is to choose � and w such that the plate
eflects an amount � �for a fixed air speed� that closely matches a

arget deflection value �̂. The plate area A= �w is constrained to a
xed value, and the drag force on the plate must not exceed Fmax.
his task, summarized in Eq. �6�, is in essence a sensor calibration
roblem.

min
�,w �� − �̂�2

subject to F − Fmax � 0

�w − A = 0

�6�

The structural analysis computes the plate deflection � for a
iven sensor design and drag force. Note that the governing equa-
ion is transcendental, requiring iterative solution for �:

k� =
1

2
F � cos � �7�

Fig. 7 Vane airflow sensor schematic „after †22‡…
Fig. 8 Simplified representation of a vane airflow sensor
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The aerodynamic analysis computes the drag force on the plate
F for a given sensor design and plate deflection; C is a constant
that incorporates air density and the drag coefficient, C= 1

2�CD,
and Af is the plate frontal area, Af = �w cos �:

F = CAfv
2 = C � w cos �v2 �8�

The analyses depend on each other—Fig. 9 illustrates this rela-

tionship. The coupling variables are �̃ and F̃. This notation is used
to distinguish coupling variables from the corresponding analysis

functions, ��� , F̃� and F�� ,w , �̃�. This notational approach is used
for this and the following example in order to preserve straight-
forward interpretation of formulations. The shared variable is �
�xs1=xs2= � �, and w is a local variable �x�1=w�. Fixed point it-

eration can be used to find consistent values of F̃ and �̃ for a given
design �x= �� ,w��.

The optimal solution to this problem may be found using mono-
tonicity analysis �MA� �23�, and can be used to benchmark com-
putational results. The analytical solution is given in Eqs. �9�:

�* =

2k cos−1� Fmax

CAv2	CAv2

Fmax
2 , w* = A/�* �9�

For parameter values k=0.050 N/rad, v=40.0 m/s, C

=1.00 kg/m3, Fmax=7.00 N, A=0.01 m2, and �̂=0.250 rad, the
optimal design is ��* ,w*�=�0.0365,0.274�. The drag coefficient of
a finite flat plate is approximately 2.0, resulting in a value of C
=1.00 if we assume air density to be 1.00 kg/m3.

The MDF solution entails solving Eq. �6�, where each optimi-
zation iteration requires a fixed point iteration solution to Eqs. �7�
and �8� to obtain consistent values for �̃ and F̃. The MDF result
matches the MA solution. The IDF solution requires the addition

of �̃ and F̃ to the decision variable set, as well as auxiliary con-
straints on these values, as shown in Eq. �10�. The IDF solution
also matches the MA solution:

min
�,w,�̃,F̃

��̃ − �̂�2

subject to F̃ − Fmax � 0

� w − A = 0

�̃ − ��� ,F̃� = 0

F̃ − F�� ,w, �̃� = 0

�10�

If the spring constant k is large, the plate deflection will be
small, resulting in only minor changes to the frontal area and drag

force. Quantitatively, increasing k will reduce �F�� ,w , �̃� /��̃, but

not affect ���� , F̃� /�F̃, resulting in reduced coupling strength be-
tween analyses. Conversely, small k results in high coupling
strength; as verified experimentally, the number of iterations re-
quired for FPI convergence increases with decreasing k. Conse-
quently, the computational expense of the MDF implementation is
expected to increase with decreasing k. IDF eliminates the need to
converge to consistent analysis results at points far from the opti-

Fig. 9 Coupling relationship in airflow sensor analysis
mal solution, but incurs its own computational overhead due to
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ncreased problem dimension. The value of k was varied from
.01 to 0.20 N/rad, and the MDF and IDF computation times �on
3.4 GHz Pentium® 4 PC� were recorded. The result, displayed in
ig. 10, reveals that MDF does incur more computational expense
ith small values of k, as expected, while IDF is only slightly

ensitive to changes in coupling strength. The MDF and IDF so-
utions agreed within 0.01% over the specified stiffness range.

Figure 11 compares the number of function evaluations re-
uired for the MDF and IDF implementations. A function evalu-
tion is defined as the calculation of both structural and aerody-
amic outputs, including calculations required for finite
ifferencing. Since the analysis expense for this example is low,
he additional computational overhead required for the IDF imple-

entation is a significant factor in solution time. With respect to
unction evaluations, IDF solution expense truly is insensitive to
oupling strength. It is also clear from this plot that the noise
isplayed in Fig. 10 is purely computational. The example in the

ig. 10 Comparison of MDF and IDF solution time as a func-
ion of coupling strength

ig. 11 Comparison of MDF and IDF function evaluations as a

unction of coupling strength
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following section requires more analysis time, which is large com-
pared to computational noise, resulting in a smoother plot of so-
lution time.

At stiffness values much larger than the range displayed in Fig.
11, the design problem becomes infeasible since the equilibrium
plate deflection is low enough that the resulting large frontal area
incurs drag force values that exceed Fmax. It is interesting to note
that in this infeasible domain, MDF satisfies the drag force con-
straint and violates the area constraint, while IDF exhibits the
converse. This phenomenon comes about because MDF finds con-

sistent values for �̃ and F̃ at each optimization iteration, while IDF

does not. IDF is free to choose an infeasible F̃ in order to satisfy
the area constraint, but MDF does not have this flexibility. As
stiffness is increased and the design problem approaches infeasi-
bility, the MDF computation time increases as observed in the
plot. At stiffness values below the displayed range, MDF fails due
to excessive coupling strength. In this design example, MDF time
increases with coupling strength due to excessive analysis effort,
and increases with decreasing coupling strength due to excessive
optimization effort for narrowly feasible design problems.

5 Turbine Blade Design
The analysis and design of a turbine blade for a gas turbine

engine is presented, followed by a parametric study on coupling
strength. The results substantiate the findings discussed in the pre-
vious sections, and provide further insights.

5.1 Design Problem Description. A turbine blade in a gas
turbine engine is exposed to high temperature combustion gases
moving at high velocity, and is subject to high forces due to aero-
dynamic drag force and centripetal acceleration. Figure 12 illus-
trates turbine blades from a GE J-79 turbojet engine �24�. Each
blade is attached to the rotor at the left of the figure, and combus-
tion gases moving from the left cause the turbine to rotate.

Several phenomena were modeled in order to capture the de-
sign tradeoffs and coupling behavior, specifically: thermal expan-
sion of the turbine blade in the axial direction, stress and elonga-
tion due to centripetal acceleration, aerodynamic drag force and
the resulting bending stresses, and the temperature dependence of
thermal conductivity, elastic modulus, and rupture stress.

The blade temperature profile depends upon its dilated length.
Elongation due to thermal expansion or centripetal forces exposes
more surface area to hot combustion gases, affecting the heat
transfer through the blade and the associated temperature profile.
The model also captures the dependence of elastic modulus and
thermal conductivity on temperature. Higher temperatures �caused
by changes in length� result in lower stiffness, causing greater
elongation. In summary, temperature depends on length, and
length depends on temperature. Thus, turbine blade analysis con-

Fig. 12 GE J-79 turbojet engine turbine blades †24‡
sists of two coupled disciplinary analyses, similar to the previous
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xample. The design task is to minimize the blade mass m and the
eat transfer through the blade q. Both of these metrics influence
urbine thermal efficiency.

5.2 Analysis Model. The turbine blade is modeled as a
imple rectangular fin �Fig. 13�. The design variables are the blade
idth w and thickness t. The blade has an initial undeformed

ength of L0, and is subjected to combustion gas at temperature Tg
nd velocity vg. The blade is affixed to a rotor with angular ve-
ocity 	, resulting in an inertial force fac. The axial position x is
easured from the blade base. Four failure modes are considered:
elting, interference between the blade and the turbine housing

ue to elongation, and structural failure due to bending stress 
b
r axial stress 
a. Several simplifying assumptions were made:
onstant coefficient of thermal expansion �, no internal blade
ooling, constant inertial force fac over the blade, and no lateral
ontraction. The dependence of thermal conductivity �k�, elastic
odulus �E�, and rupture stress �
r� on temperature is modeled
ith curve fits based on empirical data.
The turbine blade optimization problem is presented in Eq.

11�, which has been formulated as a single objective problem by

reating a mass constraint. The coupling variables T̃�x� and L̃ are
equired to be consistent with the corresponding analysis func-

ions T�w , t , L̃ ,x� and L�T̃�x�� at the solution:

min
w,t q�w,t,L̃�

subject to T�w,t,L̃,x� − Tmelt � 0

�total�T̃�x�� − �allow � 0


a�L̃,x� − 
r�T̃�x�,x� � 0


b�t,L̃,x� − 
r�T̃�x�,x� � 0

m�w,t� − mmax � 0

and 0 � x � L0 + �total�T̃�x��

�11�

melt is the melting temperature, �total�T̃�x�� is the blade elonga-
ion, �allow is the initial clearance between the blade and housing,

nd 
a�L̃ ,x�, 
b�t , L̃ ,x�, and 
r�T̃�x� ,x� are the axial, bending, and
upture stress distributions along the blade, respectively. The
nalysis for each discipline �structural and thermal� follows.

Structural Analysis. The structural analysis calculates blade
ass �m=wtL0��, where � is the blade density, the total blade

longation ��total�, which is the sum of the thermal expansion �th
nd elongation due to axial acceleration �ax, and bending and axial
tress distributions �
b�x�, 
a�x��. We begin with the elongation
alculation. The first elongation term is calculated as follows:

d�th = ��T�x� − T0�dx

�th =
L0

T�x�dx −
L0

�T0dx �12�

Fig. 13 Turbine blade model schematic
0 0
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�th =

0

L0

T�x�dx − �T0L0

T0 is the initial blade temperature, and �, the coefficient of
thermal expansion, is assumed constant. The temperature profile,
calculated by the thermal analysis, is required to evaluate �th. To
calculate �ax, the axial load as a function of axial position is de-
termined. The portion of the blade outboard of a position x pulls
with load Pa�x�. The tangential velocity of the blade v=	r is
assumed to be constant over the blade length, and is valid if
L0�r:

Pa�x� =

x

L0+�total v2

r
�Acdx =

v2

r
�wt�L0 + �total − x�

= 	2r�wt�L0 + �total − x� �13�

�ax =

0

L0+�total Pa�x�dx

AcE�T�x��
= 	2r�


0

L0+�total �L0 + �total − x�
E�T�x��

dx

�14�

�total =

0

L0

T�x�dx − �T0L0 + 	2r�

0

L0+�total �L0 + �total − x�
E�T�x��

dx

�15�

Since Eq. �15� is transcendental, an iterative solution procedure is
required to solve for �total given T�x�.

The axial stress is a function of axial position, and is calculated
with the relation 
a= Pa /Ac, where P is the axial load, Ac=wt is
the cross-sectional area as before, and L=L0+�total is the elon-
gated length.


a�L,x� = 	2r��L − x� �16�

The aerodynamic load is calculated using Paero= 1
2AfCD�v2, where

Af=wL is the frontal area, CD is the drag coefficient, � is the
combustion gas density, and v is the combustion gas velocity �as-
sumed perpendicular to the blade�. For convenience, the constant
K= 1

2CD�v2 is defined, giving Paero=KwL. The total drag force
acting on the blade outboard of a position x is Paero�x�=Kw�L
−x�, and the bending moment at point x is M�x�=Kw�L−x�2 /2,
resulting in a bending stress of:


b�w,L,x� =
3K�L − x�2

4t2 �17�

Thermal Analysis. The thermal model, which calculates the
temperature profile and heat transfer, was derived from the steady-
state heat equation using constant base temperature and an adia-
batic tip boundary condition �25�. The average convection coeffi-

cient h̄ was approximated using empirical correlations involving

the average Nusselt number Nu and the Prandtl number Pr: Nu

= h̄w /kg=C ReD
z Pr1/3. The combustion gas conduction coefficient

is kg, ReD=vw /� is the appropriate Reynold’s number, z is an
empirical exponent of 0.731, and C is the heat capacity of the

combustion gas. Solving for h̄, and substituting values for the

other parameters with SI units �at T
=900°C�, we find: h̄�v ,w�
=9.196v0.731w−0.269. The temperature profile and the heat transfer
through the blade into the rotor at the point of attachment are
found through solution of the heat equation with the appropriate
boundary conditions:

T�w,t,L,x� =
cosh�s�L − x��

�Tb − T
� + T
 �18�

cosh�sL�
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q�w,t,L� = wt�Tb − T
�tanh�sL��2h̄�w + t�wtk �19�

here s=�2h̄�t+w� /ktw.

Curve Fits. Surrogate models based on empirical data �26� were
mployed in order to capture temperature dependence. The rup-
ure stress 
r for Inconel X-750 was approximated using a modi-
ed sigmoid function:


r�T� =
1300

1 + e0.011�T−675� �20�

The conductivity of the blade k was modeled using a linear fit.

he dependence on average temperature T̄ was captured from em-
irical data

k�T̄� = 6.8024 + 0.0172T̄ �21�
A fourth-order polynomial was fit to the modulus of elasticity

or the blade material:

E�T� = 209.8 − 0.0487T − 0.0002T2 + 6 � 10−7T3 − 6 � 10−10T4

�22�

5.3 System Analysis. Figure 14 illustrates the analysis prob-
em structure. The system has two shared design variables, and no
ocal design variables.

The analysis functions evaluated by the thermal analysis are the

eat loss q�w , t , L̃� and the temperature distribution T�w , t , L̃ ,x�.
he structural analysis evaluates several analysis functions, in-

luding the mass m�w , t�, dilated length L�T̃�x��, total deflection,

total�T̃�x��, and the bending, axial, and rupture stress distributions

b�t , L̃ ,x�, 
a�L̃ ,x�, and 
r�T̃�x� ,x�. Both design variables are
hared, i.e., xs1=xs2= �w , t�. The function-valued quantities �tem-
erature and stress distributions� are discretized along the length
f the blade to facilitate numerical calculations. Using the param-
ter values from Table 1 and a sample design of �w , t�
�0.08,0.005� �meters�, the analysis outputs �using FPI� are q
0.2046 W, m=0.1702 kg, and L=0.057 m.

5.4 System Design Optimization. The turbine blade design
roblem was solved using both MDF and IDF. A parametric study

Fig. 14 Turbine blade coupling and functional relationships

Table 1 Turbine blade design parameters

8510 kg/m3 �g 3.522 kg/m3

0 0.05 m Cd 2.0
12.6�10−6 m/K v 100 m/s

b 0.5 m Tb 300°C
2100 rad/s Tg 900°C

max 0.05 m � 1.0�10−8
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on coupling strength was then performed, demonstrating the sen-
sitivity of MDF and IDF to this factor. In the MDF implementa-
tion, consistent coupling variable values were obtained using FPI
at every optimization iteration. Note that in the MDF formulation,
given in Eq. �11�, the third and fourth constraints are function-
valued; these were discretized and implemented as vector-valued
constraints. The mass was constrained not to exceed 0.04 kg. The
parameter values from Table 1 were used, and the optimal design
was found to be �w* , t*�= �0.0131,0.0075� �both in meters�. The
IDF formulation is:

min
w,t,T̃�x�,L̃ q�w,t,L̃�

subject to T�w,t,L̃,x� − Tmelt � 0

�total�T̃�x�� − �allow � 0


a�L̃,x� − 
r�T̃�x�,x� � 0


b�t,L̃,x� − 
r�T̃�x�,x� � 0

m�w,t� − mmax � 0

T̃�x� − T�w,t,L̃,x� = 0

L̃ − L�T̃�x�� = 0

and 0 � x � L0 + �total�T̃�x��

The function-valued coupling variable T̃�x� was discretized and
implemented as a vector-valued coupling variable, substantially
increasing the optimization problem dimension. The sixth and
seventh constraints were added to ensure system consistency at
algorithmic convergence, since the requirement that the system is
consistent at every step is relaxed in the IDF formulation. Using
parameter values from Table 1, the optimal design found using
IDF was almost identical to the MDF results: �w* , t*�
= �0.0128,0.0074� �both in meters�. The small numerical discrep-
ancy is not unexpected due to the increase in problem dimension.

The computation time required for both MDF and IDF solu-
tions was recorded over a range of coupling strength levels, varied
by adjusting the modulus of elasticity E�T�. A more compliant
blade results in increased blade elongation and exposed surface
area, increasing the impact that the structural analysis results have
on the thermal analysis. The E�T� curve from Eq. �22� was mul-
tiplied by a scaling factor to produce changes in coupling strength.

Fig. 15 Comparison of MDF and IDF solution time as a func-
tion of coupling strength
Figure 15 illustrates the dependence of MDF and IDF computa-
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ion time on this modulus multiplier, and hence the dependence on
oupling strength.

As with the previous example, IDF computation time is insen-
itive to coupling strength, while MDF computation time in-
reases with coupling strength. At modulus multiplier values
arger than the range illustrated, very little change in computation
ime was observed. In contrast to the previous example, increased
tiffness does not induce infeasibility, but does result in very weak
oupling as expected. Since design infeasibility is not a confound-
ng factor as in the VAF example, MDF time monotonically in-
reases with coupling strength. A very stiff blade results in effec-
ively independent analyses—only one or two FPI iterations are
equired for system analysis. At modulus multiplier values smaller
han the range presented, MDF failed due to strong coupling.

In summary, weakly coupled systems are efficiently solved with
DF, while strongly coupled systems require excessive iterations

or the inner analysis loops of MDF. The computation time re-
uired for the IDF approach is virtually constant for all levels of
oupling strength investigated here. In addition to verifying the
redictions of IDF efficiency �9� for the case of a strongly coupled
ystem, Figs. 10 and 15 show a very clear relationship between
oupling strength and computational performance.

Conclusion
The implementation of the MDF and IDF formulations was

tudied with respect to coupling strength, solution quality, and
omputational implications, as well as illustrated with new and
eproducible design problems. Theoretical predictions that IDF is
ore efficient than MDF for strongly coupled problems were veri-
ed empirically for the examples presented. An intuitive under-
tanding of convergence conditions for FPI helped demonstrate
hat the relationship between inter-analysis derivative magnitudes,
ather than absolute magnitudes, determines coupling strength.

hen considering the use of MDF and IDF formulations, clear
radeoffs exist. MDF requires less setup effort and results in lower
roblem dimensionality, but can incur expensive analysis itera-
ions during solution and is not amenable to coarse-grained paral-
elism. If FPI is used for solution, the MDF approach may fail if
onvergence conditions are not met, and may be unable to find
ome solutions. In contrast, IDF requires more extensive setup
ffort and increases optimization problem dimension, but is worth
he additional overhead when coupling strength is high and when
here are few coupling variables in comparison to design vari-
bles. Further computational advantage for IDF implementations
ay be realized through concurrent processing. This enhanced

nderstanding of the strengths and weaknesses of these two
ingle-level formulations facilitates effective selection for the
roblem at hand, and points toward the possibility that other
ethods using simultaneous analysis and design share the desir-

ble properties of IDF.

cknowledgment
This work was partially supported by a National Science Foun-

ation Graduate Research Fellowship and by the Automotive Re-
earch Center, a US Army Center of Excellence at the University
f Michigan. The authors would also like to thank Ross Morrow

or reviewing the manuscript and providing helpful suggestions.

06 / Vol. 129, SEPTEMBER 2007

ded 29 Aug 2007 to 141.212.126.89. Redistribution subject to ASM
References
�1� Wagner, T. C., 1993, “General Decomposition Methodology For Optimal Sys-

tem Design,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
�2� Rogers, J. L., and Bloebaum, C. L., 1994, “Ordering Design Tasks Based on

Coupling Strengths,” 5th AIAA/USAF/NASA/ISSMO Symposium on Multidis-
ciplinary Analysis and Optimization, Panama City Beach, FL, Sept. 7–9, Paper
No. AIAA-1994-4326.

�3� Haftka, R., Sobieszczanski-Sobieski, J., and Padula, S. L., 1992, “On Options
for Interdisciplinary Analysis and Design Optimization,” Struct. Optim., 4�2�,
pp. 65–74.

�4� Alyaqout, S. F., Papalambros, P. Y., and Ulsoy, A. G., 2005, “Quantification
and Use of System Coupling in Decomposed Design Optimization Problems,”
Proceedings of International Mechanical Engineering Congress and Exposi-
tion, Nov. 5–11, Paper No. IMECE2005-81364.

�5� Sosa, M. E., Eppinger, S. D., and Rowles, C. M., 2003, “Identifying Modular
and Integrative Systems and Their Impact on Design Team Interactions,”
ASME J. Mech. Des., 125, pp. 240–252.

�6� Sosa, M. E., Eppinger, S. D., and Rowles, C. M., 2004, “The Misalignment of
Product Architecture and Organizational Structure in Complex Product Devel-
opment,” Manage. Sci., 50�12�, pp. 1674–1689.

�7� Chanron, V., and Lewis, K., 2004, “Convergence and Stability in Distributed
Design of Large Systems,” ASME Design Engineering Technical Conference,
Sept. 28–Oct. 2, Paper No. DETC2004-57344.

�8� Bertsekas, D. P., 1999, Nonlinear Programming, 2nd ed., Athena Scientific,
Nashua, NH.

�9� Cramer, E. J., Dennis, J. E. Jr., Frank, P. D., Lewis, R. M., and Shubin, G. R.,
1994, “Problem Formulation for Multidisciplinary Optimization,” SIAM J.
Optim., 4�4�, pp. 754–776.

�10� Allison, J. T., 2004, “Complex System Optimization: A Review of Analytical
Target Cascading, Collaborative Optimization, and Other Formulations,” MS’s
thesis, Department of Mechanical Engineering, University of Michigan, Ann
Arbor, MI.

�11� Allison, J. T., Kokkolaras, M., Zawislak, M., and Papalambros, P. Y., 2005,
“On the Use of Analytical Target Cascading and Collaborative Optimization
for Complex System Design,” 6th World Conference on Structural and Multi-
disciplinary Optimization, May 30–June 3.

�12� Balling, R. J., and Sobieszczanski-Sobieski, J., 1996, “Optimization of
Coupled Systems: A Critical Overview of Approaches,” AIAA J., 34�1�, pp.
6–17.

�13� Balling, R. J., and Wilkinson, C. A., 1997, “Execution of Multidisciplinary
Design Optimization Approaches on Common Test Problems,” AIAA J., 35,
pp. 178–186.

�14� Hulme, K. F., and Bloebaum, C. L., 2000, “Simulation-Based Comparison of
Multidisciplinary Design Optimization Solution Strategies Using Cascade,”
Struct. Multidiscip. Optim., 19�1�, pp. 17–35.

�15� Sobieszczanski-Sobieski, J., and Haftka, R. T., 1997, “Multidisciplinary Aero-
space Design Optimization: Survey of Recent Developments,” Struct. Optim.,
14�1�, 1–23.

�16� Braun, R. D., 1996, “Collaborative Optimization: An Architecture for Large-
Scale Distributed Design,” Ph.D. thesis, Stanford University, Stanford, CA.

�17� Alexandrov, N. M., and Lewis, R. M., 2000, “Algorithmic Perspective on
Problem Formulations in MDO,” 8th AIAA/USAF/NASA/ISSMO Symposium
on Multidisciplinary Analysis and Optimization, Sept. 6–8.

�18� Thareja, R., and Haftka, R., 1986, “Numerical Difficulties Associated With
Using Equality Constraints to Achieve Multilevel Decomposition in Structural
Optimization,” AIAA/ASME/ASCE/AHS 27th Structures, Structural Dynamics
and Materials Conference. Part 1: Structures and Materials.

�19� Chapra, S. C., and Canale, R. P., 1998, Numerical Methods for Engineers, 3rd
ed., McGraw-Hill, New York.

�20� Hildebrand, F. B., 1974, Introduction to Numerical Analysis, 2nd ed.,
McGraw-Hill, New York.

�21� Kim, H. M., 2001, “Target Cascading in Optimal System Design,” Ph.D. the-
sis, University of Michigan, Ann Arbor, MI.

�22� Wells Manufacturing Corp., 1999, “Making Sense of Engine Airflow,” Coun-
terpoint: The Electronic Diagnostic and Driveability Resource, Vol. 3�3�, pp.
1–3.

�23� Papalambros, P. Y., and Wilde, D. J., 2000, Principles of Optimal Design:
Modeling and Computation, 2nd ed., Cambridge University Press, New York.

�24� University of Michigan, Aerospace Engineering display, François-Xavier Bag-
noud Building, April, 2006.

�25� Incropera, F. P., and DeWitt, D. P., 2002, Introduction to Heat Transfer, John
Wiley and Sons, Inc., New York.

�26� MATWEB Material Property Data, http://www.matweb.com/, accessed April 9,

2004.

Transactions of the ASME

E license or copyright, see http://www.asme.org/terms/Terms_Use.cfm


